1.Units, Dimensions and Measurement
normal

An experiment measures quantities  $a, b\,\,$ and $\,c$ and then $x$  is calculated from  $x\,\, = \,\frac{{{a^{1/2}}{b^2}}}{{{c^3}}}.$  If the percentage errors is $a, b\,\,$ and $\,c$  are $\pm 1\%, \pm 3\%$ and $\pm 2\%,$ respectively then the percentage error in $x$ can be

A

$ \pm \,\,12.5\,\% \,$

B

$ \pm \,\,7\,\% \,$

C

$ \pm \,\,1\,\% \,$

D

$ \pm \,\,4\,\% \,$

Solution

$x=a^{1/2} b^{2} / c^{3}$

Thus, $\frac{\Delta x}{x}={1/2}\frac{\Delta a}{a}+2 \frac{\Delta b}{b}+3 \frac{\Delta c}{c}$

$=0.5(\pm1)+2(\pm 3)+3(\pm 2)$

$=\pm 0.5 \pm 6 \pm 6$

$=\pm 12.5 \%$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.